Are Judges Political Animals After All? Quasi-experimental Evidence from the German Federal Constitutional Court* Thomas Gschwend[†] University of Mannheim Sebastian Sternberg[‡] University of Mannheim Steffen Zittlau[§] University of Mannheim Paper submitted for presentation at the European Political Science Conference (EPSA), Brussels 2016 #### Abstract Constitutional court judges maintain to be independent, apolitical actors, even though they get nominated by political elites. So far, much of the research has focused on the legal output of courts in order to show that judges are political animals. Studying outcomes is often plagued by endogeneity issues (e.g., when using votes to predict votes), or is simply not possible in some contexts due to the non-disclosure of individual voting records. Alternatively, scholars employ a partylabel heuristic and infer from the ideological position of the nominating party to the ideological position of judges. But do those ideological differences between judges become behaviorally relevant? In this paper, we provide two peaces of evidence that judges nominated by different parties seem to behave differently. First, we study the composition of three-judge panels (Chambers) of the German Federal Constitutional Court using Chamber decisions from 1998-2011 and show that homogenous panels have been actively avoided. Second, we analyze the court's replacement rules for absentee judges for the composition of chambers. We show that in situations where mechanically following the rules of procedure to replace absentee judges would lead to homogenous panels, the likelihood to deviate from those rules is systematically higher. Hence, judges elide formal rules to avoid homogenous chambers in order to appear politically unbiased. ^{*}We like to thank Benjamin Engst, Erik Goetze, Wolfgang Rohrhuber, Daniel Stegmüller and Caroline Wittig for helpful discussions. [†]Professor, Department of Political Science, University of Mannheim, A 5, 6, D-68131, Mannheim, Germany (gschwend@uni-mannheim.de). [‡]Graduate Student, Department of Political Science, University of Mannheim, A 5, 6, D-68131, Mannheim, Germany (sebastian.sternberg@gess.uni-mannheim.de). [§]PhD Candidate, Department of Political Science, University of Mannheim, A 5, 6, D-68131, Mannheim, Germany (zittlau@uni-mannheim.de). ## 1 Introduction Can constitutional court judges said to be "political" in the sense that their political convictions might influence how they make decisions? While there is supportive evidence for Supreme Court judges in the United States, it is still a fundamental question in the larger field of comparative judicial politics (Dyevre, 2010). Many scholars and law professionals themselves would argue that constitutional court judges are outsiders to the political world and will follow the law and nothing but the law. Therefore, one is left wondering what those judges do if law cannot give much or seemingly conflicting guidance? Others would concede that there might be an ideological dimension in judicial decision-making. However, if the nomination and election procedure as well as the way votes are reported is less focused on the individual judge, the relationship between judges' convictions, i.e., their ideological positions, and their decisions is considerably weaker than what we observe in the US. This is particularly the case because other factors such as collegial pressures (Sunstein et al., 2006), legal doctrine (Bailey and Maltzman, 2011), public opinion as well as preferences of other political actors (Hönnige, 2009; Vanberg, 2005) might render individually held political views largely irrelevant for judicial decision-making. While generally the cards seem to be stacked against answering the above question affirmative outside the United States, many scholars nevertheless struggle how to measure judges ideological positions. This is all the more difficult for, say, students of constitutional courts in Europe. Most constitutional courts do not publish individual votes, rendering it simply impossible to estimate judges' ideological positions based on the analysis of observed individual voting patterns (e.g., Bailey and Chang, 2001; Bailey and Maltzman, 2011; Bailey, 2013; Hanretty, 2012; Martin and Quinn, 2002, 2007). Even filing a separate opinion as another potential way of identifying individual voting patterns is not generally in the repertoire of actions for constitutional court judges within EU member states. (Raffaelli, 2012). Thus, the strategy of choice for many applications outside the US context is to employ the *party-label heuristic* and simply assign each judge the ideological score of the party (or any other political actor) that nominated or appointed the judge. Based on the distribution of scores across judges, scholars apply an aggregation rule (i.e., mean or median) to generate an ideological position for a panel of judges or the entire court. A leap of faith, however, is the assumption that appointees from different parties behave differently. We cannot test that directly when individual votes are not published. The contribution of our paper is that we provide a strict test of this widely-held assumption and show that party labels seem to be diagnostic in terms of expected behavior of judges even if we do not observe their individual votes. We closely look at day-to-day operations at the procedural level within the German Federal Constitutional Court (GFCC) that have been seemingly below the radar of many students and observers of the court so far. We argue that there is at least a *minimal effect* of ideology if we find that party labels matter already at the procedural level. In particular, we analyze how the court organizes its work-flow and show that a judge's party-label matters. As many other constitutional courts around the world without full docket control, the GFCC created several three-judges panels, which are called *Chambers*. A courts devision into such small panels helps to make timely decisions for a large number of cases that are deemed to be not important or controversial enough to be deliberated among all judges on the bench. Given how the judges get nominated and finally elected to the GFCC, applying the party-label heuristic we can distinguish two differently labeled judges. Using a novel data set of all Chamber compositions and their 3944 published decisions between 1998-2011 we provide two tests that party labels matter. First, we show that "homogenous" (unicolored) panels consisting exclusively of judges nominated by the same party can be observed less often than they should by chance alone if party labels did not matter. Second, using a quasi-experimental approach we find that the court avoids "homogenous" panels that would occur if one follows the court's rule of procedure how an absent judge has to be replaced by defying those rules. # 2 The Organizational Structure of the German Federal Constitutional Court and the Minimal Effect of Ideology When studying judicial decision-making in situations where judges' individual decisions are not disclosed, scholars cannot use voting patterns to infer the ideological positions of judges from decision outcomes. A common alternative strategy is to employ a party-label heuristic, by using the ideological score of the political actor that nominated or appointed the judge as a proxy. However, such a measurement strategy assumes that judges in fact behave in accordance to their party label and do not change their individual preferences over time, as it is known from the US Supreme Court (Martin and Quinn, 2002). Furthermore, literature has exclusively focused on the final decision output of courts, for instance whether legislation was rejected or not. Scholars have shown that besides ideological considerations (Hönnige, 2009; Hanretty, 2012), also public opinion (Vanberg, 2005) and legal doctrine (Bailey and Maltzman, 2011) matters. This makes it hard to disentangle these different mechanisms operating side by side, making it virtually impossible to pinpoint judges' motives. In this study we try to overcome these shortcomings by providing an alternative identification strategy of judges' ideological motives. We argue for a minimal effect of ideology, meaning that political motives already affect judge's everyday thinking. Our identification strategy aims to test the influence of ideology first in a soft-case scenario using data on day-to-day operations, and then transmit our findings to the more politicized final decision level as a hard-case scenario. If we manage to show that even court's daily routine is shaped by partisan struggle amongst judges, then it is even more likely that ideological thinking also condenses in the politicized environment of high-level decisions. We show the minimal effect of ideologically constrained judges using the German Federal Constitutional Court (GFCC) as study subject. The clue of our research strategy is that we investigate the ideological effect already at the procedural level of the court. The GFCC and its member highlight their independence from politics and their distance to party disputes at every opportunity. Asked for the role of partisan affiliation in the judicial decision-making process in an anonymous interview, a judge states that the "... independence of judges regarding partisan affiliations is tremendous." (Kranenpohl, 2010, 451). If it is correct that judges are "tremendously" independent of partisan influences, we should not find any hint of partisan considerations in their decision-making, no matter at which organizational level. If we manage, however, to show that partisan considerations influence their decision-making, we can conclude that ideology matters. The German constitutional court is considered one of the most influential courts worldwide. The institution served as a blueprint for many other European courts and courts in transitional countries. Judges of the GFCC are appointed through a political process that is based on a complex inter-party agreement, where the right of nomination rotates between the two large parties Social Democrats (SPD), Christian Democrats (CDU/CSU) and the two smaller parties, the Greens and the Free Democratic Party (FDP) (Hönnige, 2009). Hence, judges are characterized by the color the respective party that nominated them is affiliated with. Thus, there are "red" (SPD), "black" (CDU/CSU), "green" (Greens) or a "yellow" (FDP) judges. Although the court is supposed to be politically independent, parties are very concerned that no party reaches a majority in a Senate and the "golden rule of parity" is not broken. The GFCC is organized in two Senates. Each Senate consists of eight judges. However, the daily work load is mastered by panels of three judges, the so-called *Chambers*. Those panels (each Senate has three of them) account for 98 percent of the total decision volume, which makes them an important yet often ignored part of the court. Chamber panels have a "filter function": they check whether the legal requirements of complaints are met, but can also decide on cases without having consulted the Senates if the legal outcome of a case is sufficiently distinct. However, the three judges of each panel have to decide unanimously. This makes each panel's judge a veto player. #### First Implication: Formal Composition of Chambers We use the composition of these panels to test a first empirical implication of our argument that even court's daily routine is shaped by partisan struggle. The composition of the Chambers is formally written down in the so-called rules of procedure (RoP) (German: Geschäftsverteilung) at the beginning of each year. The composition of the three-judge panels allows us to test a first implication regarding the party-label heuristic. If party labels do not play any role we should observe at least some homogeneous, "unicolored" panels just by chance. In other words, if there is no relationship between party labels and judicial behavior, than the formal composition of Chambers should be totally random. Given that the assignment to various three-judge panels are done within the Senates ¹Throughout this paper we continue to use this "color terminology" for a better readability and illustration of our examples. (eight-judge panel), there are $56 \left(= \frac{8 \times 7 \times 6}{1 \times 2 \times 3} \right)$ different three-judge panel compositions. In turn, given that amongst the eight judges per Senate there is an equal number of "black" and "red" judges² we should observe $4 = \frac{4 \times 3 \times 2}{3 \times 2 \times 1}$ homogeneous panels when sampling without replacement per Senate. Thus, the probability to observe a homogeneous panel of judges just randomly is about 7 % (= $\frac{4}{56}$) per Senate. In fact, across both Senates we observe no (!) "red" chambers and merely 4 "black" chambers among 141 different three-judge panels in our data, i.e., in only less than 3% (= $\frac{4}{141}$) of all the different three-judge panels that have been composed within our observation period. Thus, this evidence already suggests that the court seems to take the party-label of judges into account when composing different three-judge chambers, and tries to actively avoid homogeneous "unicolored" ones. In other words, the court already formally assures that there are no panels composed by judges of the same party label. Therefore, we conclude that at least at the organizational level – below the level of actual decisions – party-labels matter. In the reminder of our paper we develop and discuss our second implication. We thus turn to the rules of procedure of the court and expect to find systematic deviations from it under certain conditions. #### Second Implication: Deviation from the Rules of Procedure As outlined before, the allocation of judges to the panels is defined in the RoP. These rules are adopted by each of the Senates at the beginning of each year and strictly settle which judge works with whom in which panel. Those rules also define what ought to happen when judges become indispensable and drop-out of work, e.g. due to sickness, vacations, or other reasons. In those cases, the rules of procedure exactly settle which judge is replaced by whom. Thus, for drop-out cases there exist pre-defined substitution rules. Just as the Senates, the panels and their compositions are *heterogeneous* in terms of the judges' party-label. As we have seen above discussing the first implications, almost always no political "color" dominates a Chamber³. Hence, a typical panel compositions look as illustrated in table 1. ²More precisely consistent with the dominant coalition patterns, there is sometimes a "yellow" judge nominated on the CDU/CSU ticket which we code therefore as a "black" judge and, conversely, a "green" judge nominated on the SPD ticket, which we code as a "red" judge. ³Media labeled homogeneous "red" panels as "Rotlichtkammer" (red-light Chamber), whereas homogeneous "black" panels are labeled as "Dunkelkammer" (Darkroom). | Chamber 1 | Chamber 2 | Chamber 3 | | | |---------------|---------------|-----------------|--|--| | Red Red Black | Red Black Red | Black Black Red | | | Table 1: Typical composition of heterogeneous Chambers. Red stands for SPD-nominated judges, whereas black stands for CDU/CSU nominated judges. We argue that judges want to maintain balance at any cost. In order to do so, they are even willing to break their own rules. In particular, we expect judges to systematically deviate from the RoP if they can avoid homogeneous chambers in cases of judge's absenteeism. But why is balancing – the circumvention of homogeneous panels – an expression of political considerations? We argue that judges are political animals and that their behavior is at least partially driven by ideological motives. Two mechanisms are conceivable: first, political motives matter because decisions of the court have political implications. There is evidence that judges have political preferences that correspond to the political actor that appointed them (Hönnige, 2009), thereby turning judges into "policy-seekers". In order to maximize their own utility, judges seek to avoid that colleagues with another party label dominate a panel, and thereby can shape decisions in their favor. For this reason, judges balance the composition of panels already formally (direct effect of ideology). Second, judges might balance because they know their actions are monitored by the public and the media. Although Chamber's decision-making is not as present in the media and public's mind as Senate decisions, Chamber decisions happened to be criticized by influential German newspapers⁴. Appearing to be politically biased reduces the legitimacy of the court and harms its reputation as an unconstrained court. Hence, judges might balance the Chamber compositions not because they have internalized political preferences, but to appear unbiased in the public (indirect effect of ideology). We cannot directly test which of the outlined causal mechanisms apply. However, this does not matter for the validity of our argument: either direct or indirect, ideology and political considerations lead judges to balance the panel compositions in order to avoid "homogeneous" panels and to not appear politically biased. Defying existing rules to balance panels is, therefore, evidence that party labels matter. ⁴For instance, in: Süddeutsche Zeitung, 29.07.2009, "Karlsruher Dunkelkammer" # 3 Identification Strategy As identification strategy of the minimal effect of ideology we apply a quasi- experimental approach, which is defined as a "real-world situation that produces haphazard assignment to a treatment" (Rosenbaum, 2010, 67). Through a natural intervention we seek to create an as-if randomized treatment assignment that achieves independence between treatment assignment and unit level potential outcomes. We use the potential outcomes framework (Rubin, 1974) (known as the Rubin Causal Model, RCM) to formalize our identification strategy. To model the effect of balancing we apply the following design: ``` Units (i) = Episodes of Chamber decisions Outcome (Y) = Deviation from the Rules of Procedures (Y_i \in \{0; 1\}) Treatment (D) = Critical case (D_i \in \{0; 1\}) Treatment assignment mechanism (Z) = Random drop-out of a judge ``` In our application to the Chambers of the GFCC, we want to explain the binary outcome Y_i deviation from the rules of procedure through the binary treatment D_i critical case for each episode of Chamber decision i. By D critical case we refer to cases where mechanically following the substitution pattern defined in the RoP creates unbalanced, i.e., homogenous panels. This is best illustrated using Figure 1: Imagine the rules of procedure require Chamber 1 to replace an absentee judge with the last-named judge from Chamber 2. Thus, the absence of the "black" judge in Chamber 1 and a replacement of her through the last-named judge in Chamber 2 (a "red" judge) would render Chamber 1 into a homogenous panel consisting of three "red" judges. Furthermore, Y wether the court in replacing a judge is deviating from the rules of procedure or not. By deviation we mean that judges do not follow the formal replacement order that is defined in the RoP. Illustrating this again using the example from above, imagine that the court skips the last-named ("red") judge from Chamber 2, but uses the second to last named ("black") judge as a replacement. Now, Chamber 1 remains balanced, i.e. heterogeneous, as a "black" judge dropping-out is replaced by another "black" judge coming in as replacement. The above scenario already reveals the linchpin of our research design. If judges are political animals and seek to avoid homogenous panels, they should deviate from the RoP more often in critical cases than in cases where mechanically following the rules does not turn the Chamber's composition into a homogenous one. As an observable implication, we therefore expect that the judges should be more likely to deviate in critical cases than in non-critical cases from the RoP. Our identification strategy leverages the fact that the absence of a judge in a panel (e.g. due to illness) and the resulting occurrence of a critical case is not systematic. This makes Z, drop-out of a judge, a real-world situation that mimics a randomized experiment. The drop-out thus creates a control group (D=0) and a treatment group (D=1) where treatment D is administered random. This allows us to observe a causal effect operating in relative isolation from threats of confounding (Keele, 2015, 319). Because the potential outcome is Y_{iD} , the actual outcome is a function of treatment assignment and the potential outcome such that $Y_i = D_i Y_{i1} + (1 - D_i) Y_{i0}$ (Keele, 2015). As long as the treatment assignment is independent of potential outcomes $(Y_1, Y_0) \perp D$) we can estimate the average treatment effect (ATE) as follows: $$ATE = E(Y^1|D=1) - E(Y^0|D=0).$$ In a next step we want to justify why the nature of our assignment is as good as random. We do this by highlighting several potential confounders in our research design. For a graphical illustration we rely on the directed acyclic graphs (DAGs) framework presented by Pearl (1995, 2009). We first name the confounders and their respective place in the causal framework and then substantiate why our identification strategy is still valid. Figure 1 shows graphically where potential confounders in the causal chain are located. There are two potential (and observable) confounders that are related to the treatment assignment mechanism Z, namely A (Age) and P (Professorship). Recall that Z was the drop-out of a judge from a chamber decision, e.g. due to illness. In expectation, older people become more often sick compared to younger ones. This implies different probabilities of dropping out among judges. The same logic accounts for P: beside their mandate as constitutional court judge, some of the court members also hold a professorship at universities (approximately one third of all GFCC judges hold such a professorship). There is the chance that those judges drop-out from court business more Figure 1: DAG of the effect of critical cases D on the deviation of the rules of procedure Y. Z is the random treatment assignment through sickness, A represents the age of judges, whereas P stands for a professorship of judges. W stands for the judge's workload. T describes a tactical drop-out. often than their colleagues without such a mandate because professors have additional responsibilities related to their academic position. With respect to the validity of our research design, A and P do no constitute a threat to our identification strategy. As Figure 1 illustrates, A and P do not have any causal relationship to Y. There is no theoretical reason to believe that age or holding a professorship should cause panels to systemically validate the RoP. Hence, as long as older judges or judges with a professorship do not appear systematically more often in panels that deviate systematically more from the RoP, there is no need to block their backdoor paths. W (Workload) describes the individual workload of judges and the consequences for a occurrence of Y. There are eight judges per Senate, but nine judges are needed to occupy the three-judge-panels. As logical consequence, one judge has to be part of two Chambers. Typically the President of each Senate holds this double function. Being part of two Chambers plus being President of a Senate obviously leads to a substantial workload. The GFCC usually accounts for this problem by putting those judges on last place in the replacement order. However, a few times those judges with a heavy workload appear on place two or even place one of the replacement order. Obviously this harms their ability to function as a replacement for others: the higher their workload and the earlier they are in the replacement order, the higher the chance that they are not at hand for a replacement, which makes it more likely that there is a rules of procedure deviation (Y). Nevertheless, this is not a problem for our quasi-experimental design: in expectation, W has no causal relation on D. There is also an (unobservable) potential confounder in terms of T (Tactical-dropout) of judges. T describes the chance that judges might break out of the random selection procedure by dropping out intentionally and hence causing a deviation from the rules of procedure due to (unknown and unobserved strategic considerations. Thereby the appearance of a critical case is no longer random and we are not able to obtain an unbiased estimate of the causal effect of D on Y anymore. Blocking the backdoor path via T is crucial for our design. However, there is no way for us to observe whether a judge calls in sick strategically or because of a real sickness. Yet there are strong theoretical reasons against such a strategic drop-out behavior: at best, judges would not benefit from it. At worst, judges would help judges with a competing party affiliation. Recall that the panels normally are always balanced politically according to the rules of procedure. Given Chamber 1 from Figure 1, a red judge who calls in sick cannot change the balance in the Chamber, because he or she is either replaced by another red judge (nothing changes) or a black judge (which means that now two black and one red judge are in the panel). Due to unanimity, a heterogeneous panel does not benefit any side. If a black judge calls in sick in Chamber 1, this either leads to no changes (if another black substitutes) or the whole panel becomes red (if the black judge is substituted by a red one) and unbalanced. As previously explained, such a red and homogeneous panel is something that a black judge seeks to avoid at any cost. As a result, from a strategic perspective neither red nor black judges have any incentive to strategically calling in sick. Therefore, we are convinced that our identification strategy and the randomization mechanism works as desired. #### 4 Data For our analysis we take into account 13 years of Chamber decisions from the German constitutional court. All in all, we obtained 3944 cases between 01/01/1998 and 12/31/2011 from the website of the German Federal Constitutional Court. Our choosing of this time-period is primarily due to data availability concerns. Prior data in digital format is not available, since Court cases were published online only from 1998 onwards. Note that not all Chamber cases are published, for instance if several cases with same contents are abridged to one main trial. Moreover, judges are free to decide whether a decision shall be published. Thus, a potential selection bias is a viable concern about our data base. However, if judges use their discretionary power over publication selectively, we would image judges rather avoiding to publish cases in which replacement allocation did not follow the RoP, than cases in which the RoP were followed. This selection bias would work against the hypothesized direction of the relationship. Since this would lead us to obtain a conservative estimate, a potential selection bias does not endanger the viability of our research design. #### Identifying drop outs and replacements All decisions in our sample are signed by the judges taking part in it. From this we extract the exact composition of the responsible chamber for each decision. We then identify the intended composition defined in the Court's rules of procedure for each decision. For each decision, this yields the set of names of the three defacto judges, and set of the three judges intended by the RoP. The difference between these sets identifies the judges that were replaced and the replacing judges. In 247 out of the 3944 cases, judges were replaced. In a second step, we identify for each decision the order of replacement of judges as defined by the RoP. As there are three judges in three chambers⁵, for each chamber decision the RoP stipulates the order in which the other six judges replace drop outs in this chamber. We amend the order of replacement for logical consistency. First of all, since there are only eight judges in each Senate - one judge is allocated to two chambers - the situation can arise that a judge is either his/her own replacement or is mentioned twice in the order of replacement. In the first instance, we delete the judge in question from the order of replacement. In the second instance, we delete the second mentioning of the judge from the order of replacement. This leaves us with five judges in the order of replacement for each decision. Moreover, we make sure that judges reported to be absent are not counted as potential replacements. We therefore track the absence periods of each judge, and delete this judge during his/her time of absence from the order of replacement of other chamber. $^{^5}$ Due to organizational matters, the First Senate had four panels from 01/01/2000 until 10/04/2002. #### Identifying replacement episodes In a third step, we carefully define our unit of analysis, which is the replacement episode, not the individual case. A replacement episode is defined as the period between changes in the replacement pattern. It follows that all cases that have the same replacement pattern are combined into one replacement episode. We opt for the replacement episode because replacement patterns in our data show strong path-dependency. Judges that are absent in multiple consecutive cases are generally replaced by the same replacement judge. This indicates that replacement allocation at the Court is most likely not administered on a case-by-case basis. This makes sense from an organizational perspective. Carrying over past replacement allocations as long as the same judge is absent is an organizational shortcut that helps to keep the administrative workload of assigning replacement judges manageable. Cases are therefore not the appropriate level of analysis to study RoP deviations in replacement allocations. Not taking into account the strong path dependency of replacement allocation runs the risk of duplicating units of analysis. There are also statistical reasons for our choice. Our quantity of interest, the probability of a RoP deviation, would not be the result of statistically independent Bernoulli trials if we were to use these duplicate observations. Conducting our empirical analysis on the case level would then require a more complicated analytical strategy that would heavily rely on an assumption-laden model of the dependence between cases. To circumvent these problems, we spent some notable effort to carefully combine cases in the same replacement episode. For cases with a single absentee judge, what constitutes a replacement episode is relatively straightforward. To facilitate the reader's understanding, Table 2 provides an exemplary account of our coding operations. If subsequent cases within one chamber show the same replacement pattern, i.e. the same absentee judge is replaced by the same replacement judge, all these cases are counted only as one single unit (Cases 1 and 2). If either the absentee judge or the replacement judge changes, or if the absentee judge is back available (Case 3), the replacement episode is terminated and the following cases constitute a new unit of analysis. If the times of absence of two judges overlap (judges C and B in Cases 4, 5, 6), our definition of what constitutes one unit of analysis gets somewhat more complex. If the replacement pattern of two consecutive case is partially the same, only the changes in the replacement pattern are considered. In effect, the prior replacement is treated as given, and only the latter, additional replacement is counted. Cases 4 and 5 serve as an example: while in Case 4 judge D replaces judge C, in Case 5 D and F replaces C and B. Here the subset 'D replaces C' is not counted as part of the replacement episode in Case 5, because the operation 'D replaces C' is assumed to be carried over from the prior replacement episode in Case 4. In effect, judge D is taken as given in Case 5. Only the change in the replacement pattern, that is 'F replaces B', is taken into account. Naturally, cases in which no judge was absent are not counted as replacement episodes (Case 3). Our combination of one or more cases to replacement episodes decreases our number of observations considerable: Starting with 247 cases in which we noted changes between the formal and defacto composition of the chamber, we are left with only 177 replacement episodes. | Case | formal | defacto | replacement | addition to repl. | replacement | |------|-------------|-------------|--------------------------------------|------------------------------------|-------------| | | composition | composition | pattern | pattern | episode | | 1 | ABC | ABD | $\mathrm{D} o \mathrm{C}$ | $\mathrm{D} o \mathrm{C}$ | 1 | | 2 | ABC | ABD | $\mathrm{D} o \mathrm{C}$ | | | | 3 | ABC | ABC | • | • | • | | 4 | ABC | ABD | $\mathrm{D} o \mathrm{C}$ | $\mathrm{D} o \mathrm{C}$ | 2 | | 5 | ABC | AFD | $\mathrm{DF} ightarrow \mathrm{CB}$ | $\mathrm{F} ightarrow \mathrm{B}$ | 3 | | 6 | ABC | AFD | $\mathrm{DF} ightarrow \mathrm{CB}$ | | | Table 2: Coding example for identification of replacement episodes #### Identifying RoP deviations and critical cases Finally, we code our dependent and independent variable from the replacement episodelevel data. Our dependent variable, *RoP deviation* indicates whether there was a deviation from the rules of procedure in the replacement allocation. This is the case if the order in which replacement judges are allocated does not follow the order of replacement as defined in the rules of procedure. Table 3 provides an example: Replacement episodes 1 and 2 do not constitute RoP deviations, since replacement judge D is first in the order of replacement. In Case 3, judge D is deleted from the order of replacement, since she is already part of the defacto chamber. Judge E is the RoP-conform replacement. But since judge F was allocated as a replacement, this replacement episode constitutes an RoP deviation. Our independent variable critical case indicates whether the (hypothetical) compo- sition of the chamber if the replacement order had been followed, is unbalanced. A chamber is unbalanced if it contains only judges of the same "color", which is indicated by their party affiliation. Judges can have two colors, black and red. Black judges were nominated by rightist parties (CDU, CSU, FDP), red judges by leftist parties (SPD, Greens). Turning to our example in Table 3, in episodes 1 and 2, the RoP-conform composition of the chamber contains two black and one red judge, therefore these are not critical cases. In episode 3, an all-black chamber would have resulted from following an RoP-conform replacement. Therefore episode 3 constitutes a critical case. | repl | l . | formal | defacto | add. to repl. | order of | RoP | composition after | critical | |------|------------|--------|---------|----------------------------|----------------------------|-----------|-------------------|----------| | epis | ode | | | pattern | repl. | deviation | RoP-conform repl. | case | | 1 | | ABC | ABD | $\mathrm{D} o \mathrm{C}$ | DEFGH | 0 | ABD | 0 | | 2 | | ABC | ABD | $\mathrm{D} o \mathrm{C}$ | DEFGH | 0 | ABD | 0 | | 3 | | ABC | AFD | $F \to B$ | D E F GH | 1 | AED | 1 | Table 3: Coding example: Identification of RoP deviation and critical cases #### 5 Results Our quantity of interest, the average treatment effect, is the difference in the probability of RoP violation between critical and non-critical cases. First of all, we analyze the relative frequency of RoP deviations. This should already give us a clear indication whether RoP deviations are more likely in critical cases, as the relative frequency is the maximum likelihood point estimate of our quantity of interest. Since the RoP's of two senates specify different replacement rules, the first based on the inverse hierarchy, the second on inverse seniority among the Chamber members, we analyze RoP deviations separately for each senate. As Table ?? indicates, our data shows clear signs that RoP deviations are more likely in critical cases than in non-critical cases, at least in the First Senate. Here the relative frequency with which RoP deviations appeared in non-critical cases is only 26%, while the relative frequency with which replacements deviated from the order specified in the RoP in critical cases was 62%, in eight our of thirteen cases. In the Second Senate, the pattern is much less clear. Here, RoP deviations appeared in 57% of non-critical cases, and in 62% of critical cases. Although the difference points in the hypothesized directions - with RoP deviations five percentage points more likely in critical cases - the magnitude of the observed difference in not substantial. | V1 | non-critical case | critical case | |------------------|-------------------|---------------| | no RoP deviation | 62 | 4 | | | (67%) | (29%) | | RoP deviation | 31 | 10 | | | (33%) | (71%) | | V1 | non-critical case | critical case | |------------------|-------------------|---------------| | no RoP deviation | 38 | 6 | | | (44%) | (32%) | | RoP deviation | 49 | 13 | | | (56%) | (68%) | Given the small sample size, we test whether the RoP violation rate is significantly larger in critical than in non-critical cases. To do so, we run three logit models, one on the combined sample, one on the first and one on the Second Senate. Table 4: | | RoP deviation | | | | |---------------|---------------|------------|-------------|--| | | Both Senates | Senate 1 | Senate 2 | | | Critical case | 1.1* | 1.6* | 0.5 | | | | (0.4) | (0.6) | (0.5) | | | Constant | -0.2 | -0.7^{*} | 0.3 | | | | (0.1) | (0.2) | (0.2) | | | Observations | 213 | 107 | 106 | | | Note: | | | *: p < 0.05 | | In all three models, the signs of the coefficient point in the predicted direction - a RoP deviation is more likely in critical cases. For the combined senates and the First Senate, we find the coefficient to be statistically distinguishable from zero, employing a significance level of 0.05. As expected, the small difference in the violation rate between critical and non-critical cases is not statistically significant in the Second Senate. From the model estimates we calculate our quantity of interest, the first difference in RoP deviation probability between critical and non-critical cases, using standard simulation techniques. As shown in Figure 2, we estimate RoP deviation to be 34 (95% confidence interval [6,59]) percentage points more likely in critical than in non-critical cases in the First Senate. For the Second Senates we fail to establish a statistical significant effect (5 [-19,27]). Figure 2: Average treatment effect and 95% confidence intervals by Senates. # Additional observable implications Not only do we find that the RoP deviation rate is considerably higher (as was established above), we also have precise predictions about the outcomes, i.e. the resulting Chamber composition. If ideological considerations play a role in the Court's replacement decisions, and the goal is a balanced Chamber composition, the resulting Chamber in cases where it was decided to deviate from the RoP should be balanced. This should hold true for both critical and non-critical cases. | | Non-c | ritical | Critical | | | |--------------------|----------|----------|----------|----------|--| | | Senate 1 | Senate 2 | Senate 1 | Senate 2 | | | Balanced Chamber | 18 | 35 | 8 | 10 | | | Unbalanced Chamber | 0 | 7 | 0 | 3 | | Table 5: Outcomes: Resulting Chamber composition after RoP deviation Table 5 displays the resulting Chamber composition for all cases in which the RoP ⁶The findings remains substantively unchanged if the control for workload. See Appendix. was deviated from, separately for each Senate.⁷ In the first Senate, in all of the 18 non-critical cases and 8 critical cases where the RoP was deviated from, the result was an ideologically balanced Chamber. This means that the outcomes in the First Senate are consistent with our theory: If the RoP is deviated from, the motivation for this deviation is a balanced Chamber. The pattern is less clear in the Second Senate: Here in 7 out of 42 non-critical - and 3 our of 13 critical cases where the RoP were deviated from, the resulting Chamber was unbalanced (meaning consisting of judges nominated by the same party group). While these cases are clearly inconsistent with our theory, still more often then not the result of a RoP deviation is balanced Chamber. #### Conclusion Are judges political animals after all? In this paper we argue for a *minimal effect* of ideology on judges. Contrary to current approaches that seek to demonstrate the effect of party label heuristic on judicial behavior using the most visible output of judicial decision-making, say, their final decision, we argue that the judicial mind is already governed by party politics in day-to-day operations. To test the central implications of our theory we analyze a novel data set on Chamber decisions of the German Federal Constitutional Court from 1998 to 2011 that includes daily data on real and formal panel compositions. We find that homogeneous panels of judges, which are panels consisting of members with the same party label, are empirically less often observable than one should expect by chance alone. Furthermore, judges "balance" these panels if a justice drops out by systematically deviating from the rules of procedure. Our findings suggest that these deviations are systematic and reflect the need of judges to appear politically unbiased. We conclude that judges are therefore indeed political animals. Our contribution is threefold. First, we propose a quasi-experimental approach that eliminates most of the theoretical confounders and validity threats by design. This makes it superior to traditional approaches focusing on the outcomes of judicial decisions which are often plagued by endogeneity issues. Second, our research design is not limited to the ⁷By definition, RoP conform replacement always lead to unbalanced Chambers in critical cases and to balanced Chambers in non-critical cases, and are therefore not depicted here. German Federal Constitutional Court. It can work as a blueprint for every court that works with the same panel- and substitution system. Third, we provide first evidence that political preferences of judges become not only manifest in Senate decisions (hard cases), but that the judicial mind is already driven by political considerations in day-to-day operations (soft cases). Finally, our findings open up new avenues for future research. We provide evidence that political considerations already affect the substitution of absentee judges. But do those considerations also influence the decision outcome of Chamber decisions? Do homogenous panels differ in their decision-making to heterogenous panels? Future research may therefore look closely at the actual decision-outcomes. #### APPENDIX #### Controlling for workload As noted in Section 2, the workload of the judges designated as replacement might be an intervening factors. As we have argued, since the workload of a designated replacement judge is conditionally independent of the treatment condition (there being a critical case), controlling for workload is not necessary. But if there was, by chance, an imbalance in workload between treatment and control group, controlling for workload would allow us to estimate the treatment effect more precisely. Furthermore, workload is a potential explanation for our null finding in Senate 2 due to the different replacement rule employed here. While Senate 1 assigns replacement judges according to inverse hierarchy, Senate 2 uses inverse seniority. Under the inverse hierarchy rule, it is very unlikely that the Senate President is designated as a replacement (President being on the top of the hierarchy). However, in Senate 2, a Senate President with low seniority can easily become the replacement designated by the RoP. In such a case, due to the additional workload due to the presidency, we would expect a higher deviation rate in these cases. Our empirical strategy is to code a dummy variable indicating whether the Senate president is among the judges that are designated as replacements. We find that this is indeed only the case in Senate 2 - in 12 out of 94 cases. In Senate 1 there are no instances of the president being designated as replacement by the RoP. We include this dummy variable in our logit analysis. As the strongly positive coefficient shows, RoP deviations are indeed much more likely in cases where the president was among the designated replacement. However, the coefficient for the critical cases increases only very slightly, and still is far from being statistically significant. We conclude that the probability of a RoP deviation is not statistically significantly higher in Senate 2, even after controlling for workload. ## References - Bailey, Michael A. 2013. "Is Today's Court the Most Conservative in Sixty Years? Challenges and Opportunities in Measuring Judicial Preferences." *The Journal of Politics* 75(3):1–14. - Bailey, Michael A. and Forrest Maltzman. 2011. The Constrained Court: Law, Politics, and the Decisions Justices Make. Princeton University Press. - Bailey, Michael A. and Kelly H. Chang. 2001. "Comparing Presidents, Senators, and Justices: Interinstitutional Preference Estimation." The Journal of Law, Economics & Organization 17(2):477–506. - Dyevre, Arthur. 2010. "Unifying the field of comparative judicial politics: towards a general theory of judicial behaviour." European Political Science Review 2(02):297–327. - Hanretty, Chris. 2012. "Dissent in Iberia: The ideal points of justices on the Spanish and Portuguese Constitutional Tribunals." European Journal of Political Research 51(5):671–692. - Hönnige, Christoph. 2009. "The Electoral Connection: How the Pivotal Judge Affects Oppositional Success at European Constitutional Courts." West European Politics 32(5):963–984. - Keele, Luke. 2015. "The Statistics of Causal Inference: A View from Political Methodology." *Political Analysis* 23(3):313–335. - Kranenpohl, Uwe. 2010. Hinter dem Schleier des Beratungsgeheimnisses. Der Willensbildungs- und Entscheidungsprozess des Bundesverfassungsgerichts. 1 ed. Wiesbaden: VS Verlag für Sozialwissenschaften. - Martin, Andrew D. and Kevin M. Quinn. 2002. "Dynamic Ideal Point Estimation via Markov Chain Monte Carlo for the U.S. Supreme Court, 1953-1999." *Political Analysis* 10(2):134–153. - Martin, Andrew D. and Kevin M. Quinn. 2007. "Assessing preference change on the US Supreme Court." *Journal of Law, Economics, and Organization* 23(2):365–385. - Pearl, Judea. 1995. "Causal Diagrams for Empirical Research." *Biometrika* 82(4):669–710. - Pearl, Judea. 2009. Causality. Cambridge University Press. - Raffaelli, Rosa. 2012. Dissenting opinions in the Supreme Courts of Member States. Technical report. - Rosenbaum, Paul R. 2010. Design Of Observational Studies. New York: Springer. - Rubin, Donald B. 1974. "Estimating causal effects of treatments in randomized and nonrandomized studies." *Journal of Educational Psychology* 66(5):688–701. - Sunstein, Cass R., David Schkade, Lisa M. Ellman and Andres Sawicki. 2006. Are Judges Political?: An Empirical Analysis of the Federal Judiciary. Washington D.C.: Brookings Institution Press. - Vanberg, Georg. 2005. The Politics of Constitutional Review in Germany. Cambridge: Cambridge University Press.